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1 Review of Levy Flights and Processes

In the notes that follow we will be developing methods that can be used to deal with
anomalous diffusion, the canonical example being the Levy flights of a particle undergo-
ing superdiffusive motion. Anomalous diffusion is characterized by a diffusion processes
that is non-linear in time. More specifically, anomalous diffusion is when the spatial vari-
ance has a non-linear time dependence as opposed to normal diffusion where the spatial
variance has a linear time dependence. We have discussed Levy flights and processes ex-
tensively in our previous lectures, however we summarize the key results here to provide
motivation for the development of techniques that deal with anomalous diffusion.

In working with Levy flights and processes it is easiest to deal with the character-
istic function in order to calculate the moments of the probability distribution function
(PDF). The characteristic function of the Levy distribution is

Pα(q) = exp
(
− c|q|α

)
where c is a constant and α is the Levy index that is restricted to 0 < α ≤ 2. The
key point here is that for α < 2, the variance diverges which means that a standard
Fokker-Planck approach to solving for the time evolution of the distribution function is
not applicable. The characteristic function for a Levy process is given by

Pα(q, t) = exp
(
− ct|q|α

)
We can take the Fourier transform of the characteristic function to get the PDF

Pα(x, t) =

∫
dqeiqxe−ct|q|

α

In the case that α = 2 then the PDF would reduce to a simple Gaussian and the
Fokker-Planck approach would be applicable

P2(x, t) =
1√
Dt

exp

(
− x2

Dt

)
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In the case that α < 2, if we consider the limit where x→∞ then the PDF is approxi-
mated by

Pα(x, t) ∼ t

|x|α+1

Thus we see that for the cases where α < 2 the variance will diverge and therefore the
Fokker-Planck method cannot be applied.

2 Review of Fokker-Planck Derivation

The review in the previous section shows that Levy flights and processes lead to anoma-
lous diffusion which cannot be handled by a traditional Fokker-Planck (FP) approach.
As we will see in later sections, the approaches that we will use to deal with anomalous
diffusion can be thought of as modified or generalized versions of FP. Therefore we will
use this section to review the usual FP approach so that it will be easier to compare and
contrast with the generalized FP approach.

Let W (x, t;x′, t′) be the probability density of a particle to be located at position x
at time t if the particle was at position x′ at time t′ where t′ ≤ t. Then we can define
a Markov chain process for the particle to get from (x1, t1) to (x3, t3) by considering all
of the possible intermediate steps of (x2, t2)

W (x3, t3;x1, t1) =

∫
dx2W (x3, t3;x2, t2)W (x2, t2;x1, t1) (1)

We then make an assumption about the uniformity of time which allows us to write the
probability density as

W (x, t;x′, t′) = W (x, x′; t− t′) = W (x, x′; ∆t)

where ∆t = t′ − t. We then assume that ∆t is small and expand in powers of ∆t.

W (x, x′; t+ ∆t) = W (x, x′; t) +
∂W (x, x′; t)

∂t
∆t+ ...

This expansion is valid provided that the limit definition of the partial derivative is well
defined

lim
∆t→0

1

∆t

[
W (x, x′; t+ ∆t)−W (x, x′; t)

]
=
∂W (x, x′; t)

∂t
(2)

To simplify things we will introduce the following notation

P (x, t) = W (x, x′; t) (3)

where we have neglected x′ which we will justify later. If we set t3 = t + ∆t, t2 = t,
x3 = x, x2 = y and if we neglect x1 and t1, which is akin to setting the initial position
and time at zero, then equation (1) becomes

W (x, y; t+ ∆t) =

∫
dyW (x, y; ∆t)W (y; t)
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We can then substitute this result into equation (2) to get

∂W (x, x′; t)

∂t
= lim

∆t→0

1

∆t

[ ∫
dyW (x, y; ∆t)W (y; t)−W (x, x′; t)

]
∂P (x, t)

∂t
= lim

∆t→0

1

∆t

[ ∫
dyW (x, y; ∆t)P (y, t)− P (x, t)

]
(4)

So far we have made no assumptions about the nature of W (x, y; ∆t). It is important
to note that the use of equation (3) is more than just a change of notation and that
P (x, t) and W (x, y; ∆t) are two distinct distribution functions. P (x, t) is the distribution
function that describes the long time behavior of the dynamics (i.e. t → ∞). Whereas
W (x, y; ∆t) describes the very short term behavior (i.e. ∆t → 0). For very long times
the distribution function no longer depends on the initial condition, x′, which is why it
is valid to drop x′ in equation (3).

Since W (x, y; ∆t) is the distribution that describes very short time scales, then we
know that if the time for the transition (∆t) goes to zero, and if the the velocity is finite
(a requirement for any physical system) then the particle should not move at all, in other
words

lim
∆t→0

W (x, y; ∆t) = δ(x− y)

We can then assume that ∆t is very small (not quite 0) and expand the delta function

W (x, y; ∆t) = δ(x− y) +A(y,∆t)δ′(x− y) +
1

2
B(y,∆t)δ′′(x− y) (5)

where we have ignored higher order terms and A(y,∆t) and B(y,∆t) are function that
have yet to be determined. We can find express A(y,∆t) and B(y,∆t) as moments of W
by utilizing the fact that W , being a transfer probability must satisfy two normalization
requirements ∫

W (x, y; ∆t)dx = 1 and

∫
W (x, y; ∆t)dy = 1

To find A(x,∆t) we multiply equation (5) by (x− y) and integrate over x∫
dx(x− y)W (x, y; ∆t) =

∫
dx(x− y)δ(x− y)+

∫
dx(x− y)A(y,∆t)δ′(x− y)

+

∫
dx(x− y)

1

2
B(y,∆t)δ′′(x− y)

(6)

We then need to make use of the following integral identities involving the delta function
(we will also need these integrals later in this paper)∫

g(x)δ′(x)dx =−
∫

∂

∂x

[
g(x)

]
δ(x)dx∫

g(x)δ(n)(x)dx =(−1)n
∫

∂n

∂xn
[
g(x)

]
δ(x)dx

(7)
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Using the identities from equation (7) in equation (6) gives us∫
dx(x− y)W (x, y; ∆t) = −A(y; ∆t)

A(y; ∆t) =

∫
dx(y − x)W (x, y; ∆t) = 〈〈∆y〉〉 (8)

Similarly, if we multiply equation (5) by (x − y)2 = (y − x)2 and then integrate over x
and use the identities in equation (7) to simplify, we find an equation for B(y; ∆t)∫

dx(y − x)2W (x, y; ∆t) = (−1)2 × 1

2
× 2×B(y; ∆t)

B(y; ∆t) =

∫
dx(y − x)2W (x, y; ∆t) = 〈〈(∆y)2〉〉 (9)

Thus the functions A(y; ∆t) and B(y; ∆t) can be very conveniently expressed as moments
of W which is useful because the moments correspond to physical macroscopic quantities
of the system.

If we now integrate equation (5) over y instead of x as we have done previously then
we get a new relation between A(y; ∆t) and B(y; ∆t)∫

dyW (x, y; ∆t) =

∫
dyδ(x− y) +

∫
dyA(y,∆t)δ′(x− y) +

∫
dy

1

2
B(y,∆t)δ′′(x− y)

1 = 1 +

∫
dy
∂A(y; ∆t)

∂y
δ(x− y) +

∫
dy

1

2

∂2B(y,∆t)

∂2y
δ(x− y)

=⇒ A(y; ∆t) =
1

2

∂B(y; ∆t)

∂y
(10)

Or we can express this equation in terms of the moments of W

〈〈∆y〉〉 =
1

2

∂

∂y
〈〈(∆y)2〉〉 (11)

This equation is equivalent to the statement of Louisville’s theorem which along with
Hamilton’s equations was the method originally used to derive the FK equation by
L.D. Landau. Equations (10) and (11) are equivalent to the statement of microscopic
reversibility also known as the detail balance principle. The final assumption we will
need is a set of limit equations collectively known as the Kolmogorov conditions

lim
∆t→0

1

∆t
〈〈∆x〉〉 = A(x)

lim
∆t→0

1

∆t
〈〈(∆x)2〉〉 = B(x)

lim
∆t→0

1

∆t
〈〈(∆x)m〉〉 = 0, (m > 2)

(12)
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Physically, we can think of B(x) as a diffusion coefficient, that is, B(x) = D(x) where
D(x) is the diffusion coefficient. In that case, from equation (11) we have that

A(x) =
1

2

∂

∂x
D(x)

Thus we can think of A(x) as the convective component of the particle movement, i.e,
the particle velocity. However we will continue to use B(x) for now to keep the notation
more general. We can now derive the Fokker-Planck equation by substituting equation
(5) into equation (4) to get

∂P (x, t)

∂t
= lim

∆t→0

1

∆t

[ ∫
dy

[
δ(x− y) +A(y,∆t)δ′(x− y) +

1

2
B(y,∆t)δ′′(x− y)

]
P (y; t)

−P (x, t)

]
∂P (x, t)

∂t
= lim

∆t→0

1

∆t

[
P (x, t)−

∫
dy

∂

∂y

{
A(y,∆t)P (y, t)

}
δ(x− y)+

1

2

∫
dy

∂2

∂y2

{
B(y,∆t)P (y, t)

}
δ(x− y)− P (x; t)

]
∂P (x, t)

∂t
= lim

∆t→0

1

∆t

[
− ∂

∂x

{
A(x,∆t)P (x, t)

}
+

1

2

∂2

∂x2

{
B(x,∆t)P (x, t)

}]
Using the Kolmogorov conditions from equation (12) we finally have

∂P (x, t)

∂t
= − ∂

∂x

{
A(x)P (x, t)

}
+

1

2

∂2

∂x2

{
B(x)P (x, t)

}]
(13)

which is the Fokker-Planck equation. We can use equation (10) to simply the FP equation

∂P (x, t)

∂t
= − ∂

∂x

{
1

2

∂B(x)

∂x
P (x, t)

}
+

1

2

∂2

∂x2

{
B(x)P (x, t)

}
∂P (x, t)

∂t
=

1

2

∂

∂x

{
B∂P (x, t)

∂x

}
− 1

2

∂2

∂x2

{
B(x)P (x, t)

}
+

1

2

∂2

∂x2

{
B(x)P (x, t)

}
∂P (x, t)

∂t
=

1

2

∂

∂x

{
D∂P (x, t)

∂x

}
(14)

where we have replaced B with the more familiar diffusion coefficient, D, that it,

D = B = lim
∆t→0

〈〈(∆x)2〉〉
∆t

An important solution to the FP equation is when D is a constant. In this case, the
solution to the FP equation is a Gaussian distribution of the form

P (x, t) =
1√

2πDt
exp

(
− x2

2Dt

)
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The odd moments of P (x, t) are zero while the even moments are given by

〈x2m〉 = Dmtm (m = 1, 2, ...)

Thus we see that for m = 1 we have that the variance is proportional to time with the
constant of proportionality equal to the diffusion coefficient which is characteristic of
normal diffusion (as opposed to anomalous diffusion).

3 Strange Kinetics

As was discussed in Section 1, the Levy process naturally leads to variances of the form

〈δx2〉 ∼ tγ

where γ 6= 1. If we could have γ = 1 then we could simply use the Fokker-Planck
approach as derived in Section 2. However, in general we will have cases where γ 6= 1
and we have to develop another approach that will account for this anomalous diffusion.
There are two ways of dealing with this. The first is the Continuous Time Random
Walk (CTRW) method and the second is the method of Fractional Kinetics (FK). Both
methods are very similar to the FP method.

4 CTRW Model

4.1 Overview

In the CTRW model, the key idea is that the time step now has a distribution of its
own. Recalling the FP derivation, in order to solve the FP equation, we need to solve for
A(x) and B(x) using the Kolmogorov conditions in equation (12). This necessarily means
that we must have a distribution specified for ∆x, that is, we must have a distribution
function for the spatial step size. Physically this means that each step in the motion of
the particle can vary. However, there is no distribution for the time step, ∆t. The time
step is fixed and acts like a clock that indicates the regular evenly spaced points in time
when the particle moves. Now in the CTRW model we will release time from the role
of a simple clock and require that ∆t also has some statistical distribution and hence
variability. In order to proceed further we must therefore specify distribution functions
for both ∆x and ∆t.

Since we have two stochastic variables we can use the Chapman-Kolmogorov equation
to relate the joint probability distribution. The Chapman-Kolmogorov equation is given
by

Q(x, t) =

∫
d(∆x)

∫ t

0
d(∆t)Q(x−∆x, t−∆t)P (∆x,∆t)

where Q(x, t) is the distribution of jump points and P (∆x,∆t) is the joint PDF of the
two stochastic variables ∆x and ∆t. To proceed further we must assume some form for
P (∆x,∆t). There are two common models used for specifying the joint PDF called the
Waiting model and the Velocity model.
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4.2 Waiting Model

The fundamental assumption in the Waiting Model is that the joint PDF can be factored
into the product of two separate PDF’s each dependent on only one of the stochastic
variables, meaning that

P (∆x,∆t) = P (∆x)P (∆t)

If we assume that P (∆x) is a standard Gaussian then we can expand Q(x−∆x, t−∆t)
in term of ∆x assuming that ∆x is small. If we did not have a stochastic dependence
on ∆t, that is, if t once again played the usual role of a clock, then we would expand
Q to second order in ∆x which would result in the FP equation (Note that the method
mentioned here is equivalent to but not the same as the method in Section 2). However,
since we now have ∆t as a stochastic variable we expand Q to first order in ∆x to get

Qw(x, t) =

∫ t

0
d(∆t)Q(x, t−∆t)Φw(∆t)

where Qw(x, t) is a relabeling to indicate a jump PDF derived by the Waiting model
and Φw(∆t) is the probability to wait at least ∆t and is given by

Φw(∆t) =

∫ ∞
∆t

dt′P (t′)

To proceed further a distribution must be chosen for P (t′), that is, a distribution must
be specified for the time step.

4.3 Velocity Model

The Velocity Model proceeds by assuming that the time step is proportional to the
spatial step with the constant of proportionality being a finite velocity

∆x

∆t
= v =⇒ ∆t =

∆x

v

The joint PDF can then be expressed as

P (∆x,∆t) = δ

(
∆t− |∆x|

v

)
P (∆x)

Substituting this joint PDF into the Chapman-Kolmogorv equation gives us

Qv(x, t) =

∫ vt

−vt
d(∆x)

∫ t

0
d(∆t)Q(x−∆x, t−∆t)Φv(∆x,∆t)

where Qv(x, t) is a relabeling to indicate a jump PDF derived by the Velocity model and
Φv(∆x,∆t) is the probability to make a step of at least length |∆z| with duration |∆t|
and is given by

Φv(∆x,∆t) =
1

2
δ
(
|∆x| − v∆t

) ∫ ∞
|∆x|

dx′
∫ ∞

∆t
dt′δ

(
t′ − |x

′|
v

)
P (x′)

Once again to proceed further a distribution must be chosen for P (x′), that is, a distri-
bution must be specified for the spatial step.
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4.4 CTRW Summary

This completes our short overview of CTRW models. The key assumption is that the
distribution now depends on a stochastic time step variable in addition the standard
stochastic spatial step variable.

In the case of very small time steps and very small spatial steps, the CTRW methods
would reduce to the case of normal diffusion. In other words, anomalous diffusion arises
from either long time steps (i.e. sticking) or long spacial steps (i.e. flights). If we have a
situation with small spatial steps and Levy distributed times steps (i.e. long wait times;
fat tails in PDF) then we would have γ < 1 which would correspond to subdiffusion.
Physically, this would mean that the particle would follow a path where it would stick
for long periods of time at certain points. If we have the reverse situation, that is,
small time steps and Levy distributed spatial steps (i.e. Levy flights) then we would
have γ > 1 which would correspond to superdiffusion. Physically, this would mean that
the particle motion would exhibit a number of very long jumps during its motion. An
excellent example of this is the motion of particles in laminar fluid flow in a rotating
annulus [1].

Overall the CTRW models are non-local and thus non-Markovian in space time.
Thus the history of the particle motion matters as opposed to a Markovian process
where the history does not matter. That is, for the FP approach we started by defining
a Markov-type chain process in equation (1) which we reproduce below,

W (x3, t3;x1, t1) =

∫
dx2W (x3, t3;x2, t2)W (x2, t2;x1, t1)

Whereas in the CTRW models we start with a general form of the Chapman-Kolmogorov
equation,

Q(x, t) =

∫
d(∆x)

∫ t

0
d(∆t)Q(x−∆x, t−∆t)P (∆x,∆t)

which is non-Markovian due to the space and time distributions.

5 Fractional Kinetic and the FKE

5.1 Derivation of the FKE

We now turn to the discussion of our second method for dealing with anomalous diffusion,
namely the Fractional Kinetic method. The FK method is more systematic than the
CTRW method but it is slightly more obscure. The FK method and the CTRW method
are similar in that both methods change time from a simple clock to a stochastic variable.
However, the CTRW method results in non-Markovian equations as functions of P (∆x)
and P (∆t) whereas the FK method results in equations that have fractional derivatives
and critical exponents. The culmination of the FK method is the derivation of the
Fractional Kinetic Equation (FKE) which is analogous to the FP equation in the FP
method.
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The derivation of the FKE will closely mirror the FP derivation of the FP equation
and as we will see, the FP equation will be a special case of the FKE. We start by
defining the transition probability as

P (x, t) = W (x, t;x′, t′) = W (x, x′; t− t′) = W (x, x′; t)

where as before the transition probability represents the probability density of a particle
to be located at position x at time t if the particle was at position x′ at time t′ where
t′ ≤ t. We once again assume uniformity of time and we neglect x′ and t′ by assuming
that we start from position zero and time zero. We then define ∆tP (x, t) to be an
infinitesimal shift in P (x, t) along t by ∆t. If we had a regular smooth time variable
then we could expand ∆tP (x, t) as

∆tP (x, t) =
∂P (x, t)

∂t
∆t+O(∆t2)

But since we are now dealing with fractal time, fractional derivatives and fractional
exponents, the expansion of ∆tP (x, t) becomes

∆β
t P (x, t) =

∂βP (x, t)

∂tβ
+O(∆tβ1) 0 ≤ β ≤ 1, β1 > β (15)

We now want to consider an infinitesimal change in P (x, t) due to transitions from other
positions, P (x′, t), to P (x, t) in the same time interval ∆t from above. Since we assume
that we have a physical system with finite velocities, for small ∆t only the positions of
x′ that are close to x at time t will be capable of moving to x after a time ∆t. We
can define ∆xP (x, t) to be the infinitesimal shift in P (x, t) due to transitions from other
positions. Using fractional exponents once again we have

∆α
xP (x, t) =

∫
dyW (x, y; ∆t)P (y, t)− P (x, t) +O((∆t)β2), β2 > β (16)

Using equations (15) and (16) we can write an equation that expresses the conservation
of particle number

∆β
t P (x, t) = ∆α

xP (x, t) +O((∆t)β3), β3 = min(β1, β2)

Dividing by (∆t)β and taking the limit at ∆t goes to zero gives us

lim
∆t→0

1

(∆t)β
∆β
t P (x, t) = lim

∆t→0

1

(∆t)β
∆α
xP (x, t) (17)

Substituting equation (16) into equation (17) gives us

∂βP (x, t)

∂tβ
= lim

∆t→0

1

(∆t)β

{∫
dyW (x, y,∆t)P (y, t)− P (x, t)

}
(18)
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Note the similarity of equation (18) to equation (4) in the normal FP approach. Now we
assume that W (x, y,∆t) can be expanded in a similar way to the expansion in equation
(5) except now we have to introduce the fractional exponents

W (x, y; ∆t) = δ(x−y)+A(y,∆t)δα(x−y)+
1

2
B(y,∆t)δα1(x−y), 0 < α < α1 ≤ 2 (19)

Note that if α = 1 and α1 = 2 then this reduces to the FP method. In making this
expansion we will assume that the functions A(y,∆t) and B(y,∆t) are independent
of P (x, t). Just like in the FP method, we have that W (x, y; ∆t) represents the local
dynamics (|x − y| → 0) and P (x, t) represents the non-local features (x, t → ∞). Thus
the assumption of the independence of A(y,∆t) and B(y,∆t) is akin to the statement
that the large time behavior is independent from the local transitions.

Proceeding as before, we look to express A(y,∆t) and B(y,∆t) as moments of
W (x, y; ∆t). It turns out that A(y,∆t) does not have a simple expression but B(y,∆t)
does. We derive the expression for B(y,∆t) by multiplying equation (19) by |x − y|α1

and integrate over x

〈〈|∆x|α1〉〉 =

∫
dx|x− y|α1W (x, y; ∆t)

〈〈|∆x|α1〉〉 =

∫
dx|x− y|α1

{
δ(x− y) +A(y,∆t)δα(x− y) +B(y,∆t)δα1(x− y)

}
Since we have that α1 > α, the first two terms drop out when we use the identities in
equation (7)

〈〈|∆x|α1〉〉 = α1!B(y,∆t)

〈〈|∆x|α1〉〉 = Γ(1 + α1)B(y,∆t)

To get the more complicated equation for A(y,∆t) we integrate equation (19) over y∫
dyW (x, y; ∆t) =

∫
δ(x− y) +

∫
dyA(y,∆t)δα(x− y)

∫
dyB(y,∆t)δα1(x− y)

1 = 1 +

∫
dy
∂αA(y,∆t)

∂yα
δ(x− y) +

∫
dy
∂α1B(y,∆t)

∂yα1
δ(x− y)

=⇒ ∂αA(x,∆t)

∂(−x)α
+
∂α1B(x,∆t)

∂(−x)α1
= 0 (20)

We then define A(x) and B(x) similar to the Kolmogorov conditions in equation (12) of
the FP derivation

A(x) = lim
∆t→0

A(x,∆t)

(∆t)β

B(x) = lim
∆t→0

B(x,∆t)

(∆t)β

(21)
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Dividing equation (20) by (∆t)β and taking the limit as ∆t → 0 and then using the
definitions in equation (21) gives us

∂αA(x)

∂(−x)α
+
∂α1B(x)

∂(−x)α1
= 0 (22)

With the definitions in equation (21) and the relation in equation (20) we can now
produce the FKE equation. We first rewrite equation (18) as

∂βP (x, t)

∂tβ
= lim

∆t→0

1

(∆t)β

[ ∫
dy

{
W (x, y; ∆t)− δ(x− y)

}
P (y, t)

]
Substituting equation (19) into this results in

∂βP (x, t)

∂tβ
= lim

∆t→0

1

(∆t)β

[ ∫
dy

{
A(y,∆t)δα(x− y) +B(y,∆t)δα1(x− y)

}
P (y, t)

]
∂βP (x, t)

∂tβ
= lim

∆t→0

1

(∆t)β

[
∂α

∂(−x)α
(
A(y,∆t)P (x, t)

)
+

∂α1

∂(−x)α1

(
B(y,∆t)P (x, t)

)]
∂βP (x, t)

∂tβ
=

∂α

∂(−x)α
(
A(x)P (x, t)

)
+

∂α1

∂(−x)α1

(
B(x)P (x, t)

)
(23)

Equation (23) is the FKE equation and the critical exponents are β, α and α1. Solving
the FKE requires knowledge of the forms of the equations for A(x) and B(x).

A simplification of the FKE can be make when α1 = α+ 1 and if we use the relation
in equation (20). The simplified FKE in this case is

∂βP (x, t)

∂tβ
= − ∂α

∂(−x)α

(
B(x)

∂P (x, t)

∂x

)
Note that this equation reduces to the regular FP equation (equation (14)) in the case
of α = 1, β = 1 and B(x) = 1

2D.

5.2 Special cases of FKE

There are a couple of special cases of the FKE that are worth mentioning. If we assume
that B(x) can be neglected then equation (23) becomes

∂βP (x, t)

∂tβ
=

∂α

∂|x|α
(
A(x)P (x, t)

)
Case 1: If β = 1 and α = 2 then we have normal diffusion. Case 2: If 0 < β < 1 and
α = 2 then we have the equation for fractal Brownian motion

∂βP (x, t)

∂tβ
=

∂2

∂|x|2
(
A(x)P (x, t)

)
Case 3: If β = 1 and 1 < α < 2 then we have a Levy Process

∂P (x, t)

∂t
=

∂α

∂|x|α
(
A(x)P (x, t)

)
11



5.3 Physics of FKE

When applying the FKE to a physical system we are mostly interested in the moments of
P (x, t) since these correspond to the macroscopic observables of the system. In general,
the moments are expressed as

〈|x|δ〉 =

∫
dx|x|δP (x, t) (24)

If we assume that A(x) is constant and B(x) is negligible in equation (23) then we have

∂βP (x, t)

∂tβ
=

∂α

∂|x|α
(
AP (x, t)

)
We then multiply this equation by |x|α

∂β

∂tβ

(
|x|αP (x, t)

)
= A|x|α∂

αP (x, t)

∂|x|α

We then integrate over x and use the definition of the moment in equation (24)

∂β〈|x|α〉
∂tβ

= A
∫
dx|x|α∂

αP (x, t)

∂|x|α

∂β〈|x|α〉
∂tβ

= A
∫
dx

(
∂α

∂|x|α
|x|α

)
P (x, t)

∂β〈|x|α〉
∂tβ

= α!A
∫
dxP (x, t)

∂β〈|x|α〉
∂tβ

= Γ(1 + α)A (25)

We then integrate this result over tβ to get

〈|x|α〉 = AΓ(1 + α)

Γ(1 + β)
tβ (26)

For a self-similar solution to the FKE we would expect a relation of the form

〈|x|〉 ∼ t
β
α = t

µ
2

where we have introduced the transport exponent, µ, given by

µ =
2β

α

If we assume that we have finite variances then we can write the variance as

〈x2〉 = tµ

12



Thus we see that, in the regime where A(x) is constant and B(x) is negligible, the FKE
will produce a self-similar result that allows for anomalous diffusion. In addition, we
see that the FK method is more general than the FP method since normal diffusion is a
special case of equation (26). If µ = 1 then we have 〈x2〉 = t which is the case for normal
diffusion (i.e. FP method applies). For µ = 1 we can have α = 2 and β = 1 which agrees
with our earlier statements about normal diffusion. The more interesting cases are when
µ 6= 1 which is the regime of anomalous diffusion. If µ > 1 then we have super diffusion
which physically corresponds to diffusive motion that has very large spatial steps. If
µ < 1 then we have subdiffusion which physically corresponds to diffusive motion that
has very long wait times. Notice that µ is a function of the critical exponents, α and
β, which in turn are determined by the short time evolution of W (x, y; ∆t) and the
Kolmogorov-like conditions in equation (21).

5.4 Applicability of FKE and Conflict with Dynamics

In order to apply the FKE to the description of some physical system, that physical
system necessarily puts some restraints on the form and usage of the FKE. There are
four primary constraints that are placed on the FKE. (1) If we choose space and time
intervals that are infinite then this allows for the possibility of having infinite moments
of P (x, t). If we have finite space and time intervals, that is, a space-time window where

−∞ < xmin < x < xmax <∞ −∞ < tmin < t < tmax <∞

then we will have finite moments of P (x, t).
(2) Since P (x, t) is a probability we must have that P (x, t) ≥ 0. This restriction

along with the assumption of a system that has infinite space and time intervals (i.e.
the possibility of infinite moments) places restrictions on the critical exponents. For
example, in the case of the Levy process (β = 1) these two conditions restrict α to
0 < α ≤ 2. Another example is when A(x) = const in which case the two conditions
restrict the critical exponents to 0 < β ≤ 1 and 0 < α ≤ 2.

(3) In the case of finite space-time windows the asymptotics of the systems will be
different depending on the window. This means that there will be different sets of critical
exponents for different windows.

(4)The definition of the fractional integration and differentiation that we have used
in not unique. In our derivation, we have used the Riemann-Liouville form of fractional
kinetics but other forms are possible. Using a different form of the fractional derivative
will lead to a different structure for the FKE. Thus a physical scenario must specify the
type of fractional derivative to use as well as the boundary and initial conditions.

In addition to these four constraints there is an additional constraint that has to do
with a result predicted by the FK method that violates the laws of physical dynamics.
This violation of dynamics is similar to the infinite velocity problem of the FP method.
We assume that A is constant and consider equation (25)

(δx)α

(δt)β
∼ A

13



vα(δt)α−β ∼ A = const (27)

where v is the velocity. Since µ < 2 we have

α− β = α

(
1− µ

2

)
> 0

Thus the exponent of δt in equation (27) is a positive exponent and hence in the limit
of δt→ 0 we must have that v →∞ which is unphysical. The solution to this problem
is that we must allow for a minimum time step, δtmin, below which the FKE cannot be
applicable. Thus there exists some δtmin such that if δt < δtmin then the FKE cannot
be applied.

5.5 FK and the Standard Map

The standard map (a.k.a the Chirikov-Taylor map) is a physically useful map since it
describes the physics of a magnetic field in a tokamak, a particle interacting with a
electromagnetic wave or a periodically kicked rotor. In momentum (p) and position (x)
coordinates the standard map is written as

pn+1 = pn +Ksin(xn)

xn+1 = xn + pn+1

where p and x are typically defined on a torus such that −π < p < π and −π < x < π.
For K values that satisfy the Chirikov overlap criterion the motion of the particle will
cover all of phase space and it will be chaotic. In the case of normal diffusion the diffusion
coefficient for the standard map is given by

D = const = Dql =
K2

2

In addition, the case of regular diffusion is governed by an equation similar in form to
equation (14)

∂P (p, t)

∂t
=

1

2
D∂

2P (p, t)

∂p2

If we use D = Dql then we have that

〈p2〉 = Dt

where the second moment of p is linear with respect to time as is expected for normal
diffusion. However, simulations show that for certain values of K the second moment of
p actually goes as

〈p2〉 = (const) · tµp where µp > 1

where µp(K) is function of K. This diffusion is superdiffusive and varies depending on
the K value. If we plot D

Dql
= 2D

K2 versus K, as in Figure 1, we see that there are several

14



peaks where the superdiffusion occurs. Normal diffusion occurs when the ratio is equal
to one. The presence of anomalous diffusion in the standard map leads to the necessity
to use the FK method for analyzing the standard map.

Figure 1: Ratio of diffusion coefficient to normal diffusion coefficient versus K for the Standard Map.
Reproduced from [2].

Note that as t increases the peaks get higher and higher. For the standard map we
therefore see that there are many sets of critical exponents (α,β) for the system which
depend on the K value. In addition, for certain K values the system will undergo normal
diffusion while for other values of K the system will undergo super-diffusive levy flights.

6 Comparison of FP and FK methods

In the derivation of the FKE in the previous section we often alluded to the similarities
between the FK method and the FP method. Here we summarize that similarity by
directly comparing the key equations and parameters in each derivation. The key point
is that the FK method is a more general method which in the case of β = 1, α = 1 and
α1 = 2 will reduce to the FP method.
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Parameter Fokker-Planck Fractional Kinetics

Stochastic variable ∆x ∆x, ∆t

Role of time Fixed clock Variable, PDF

Variance 〈|x|2〉 ∼ t 〈|x|2〉 ∼ tµ where µ < 2

Kolmogorov Conditions Equation (12) Equation (21)

A(y,∆t) 〈〈(∆y)〉〉 No simple form

B(y,∆t) 〈〈(∆y)2〉〉 〈〈|∆x|α1 〉〉
Γ(1+α1)

Relation between A(x) and B(x) Equation (10) Equation (22)

Perhaps the most important change to the FP method that gives rise to the FK
method is encapsulated in rows 1 and 2 where time is given its own statistical distribution
and is removed from the role of a fixed clock. This modification is what allows for the
description of anomalous diffusion as seen in row 3. The overall similarities between the
FK and FP methods are best exhibited by the similarities in the assumptions and key
equations such as the Kolmogorov conditions in row 4 and the relation between A(x)
and B(x) in row 7. For the Kolmogorov conditions we had

FP FK

lim
∆t→0

1

∆t
〈〈∆x〉〉 = A(x) A(x) = lim

∆t→0

A(x,∆t)

(∆t)β

lim
∆t→0

1

∆t
〈〈(∆x)2〉〉 = B(x) B(x) = lim

∆t→0

B(x,∆t)

(∆t)β

Notice how the key difference between the equations is the usage of a fractional derivative
for the FK method. For the relation between A(x) and B(x) we had

FP FK

A(y; ∆t) =
1

2

∂B(y; ∆t)

∂y

∂αA(x)

∂(−x)α
+
∂α1B(x)

∂(−x)α1
= 0

where once again the key difference is the usage of fractional derivatives in the FK
method. The difficulty of using the FK method is best seen in rows 5 and 6 of the table.
For the FP method we found that we could easily define A(y,∆t) and B(y,∆) in terms
of the the moments of the PDF which in turn correspond to macroscopic observables.
However for the FK method we can only define B(y,∆t) in terms of a moment of the
PDF. The equation for A(y,∆t) is much more difficult to obtain in the FK method
which makes the FK method more cumbersome to use than the FP method.
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